login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063019
Reversion of y - y^2 + y^3 - y^4.
12
0, 1, 1, 1, 1, 2, 7, 22, 57, 132, 308, 793, 2223, 6328, 17578, 47804, 130169, 360924, 1019084, 2900484, 8252860, 23445510, 66717135, 190750110, 548178735, 1580970612, 4568275692, 13217653582, 38306172442, 111248832992
OFFSET
0,6
COMMENTS
Apparently: For n>0 number of Dyck (n-1)-paths with each ascent length equal to 0 or 1 modulo 4. - David Scambler, May 09 2012
LINKS
John Engbers, David Galvin, Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016. See p. 8.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
Conjecture: 32*n*(n-1)*(n-2)*a(n) -8*(n-1)*(n-2)*(16*n-9)*a(n-1) +2*(n-2)*(71*n^2+46*n-549)*a(n-2) +(97*n^3-2250*n^2+10859*n-14850)*a(n-3) -12*(4n-15)*(4*n-14)*(4*n-17)*a(n-4)=0. - R. J. Mathar, Oct 01 2012
Conjecture confirmed for n >= 5 using the fact that the g.f. satisfies
(24*x + 96)*g(x) + (-1104*x^2 - 1302*x + 456)*g'(x)
+ (-2688*x^3 - 1086*x^2 + 1086*x - 312)*g''(x)
+ (-768*x^4 + 97*x^3 + 142*x^2 - 128*x + 32)*g'''(x) = 6*x+24. It
is not true for n=4. - Robert Israel, Jan 08 2019
Recurrence: 16*(n-2)*(n-1)*n*(5*n-14)*a(n) = 4*(n-2)*(n-1)*(110*n^2 - 473*n + 468)*a(n-1) - (n-2)*(1015*n^3 - 6902*n^2 + 15391*n - 11232)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(5*n-9)*a(n-3). - Vaclav Kotesovec, Feb 12 2014
Conjecture: a(n+1) = (1/(n+1))*Sum_{k=0..floor(n/4)} binomial(n+1, n-4*k)*binomial(n+k, n) (compare to the formula from Peter Bala in A215340). - Joerg Arndt, Apr 01 2019
From Paul D. Hanna, Sep 01 2022: (Start)
G.f. A(x) satisfies:
A(x)^3 = A( x^3 + 3*x*(1-x)*A(x)^3 ), and
A(x)^3 = ( x^3 + 3*x*(1-x)*A(x)^3 ) * (1 + A(x)^3) / (1 - A(x)^12). (End)
EXAMPLE
G.f. A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 7*x^6 + 22*x^7 + 57*x^8 + 132*x^9 + 308*x^10 + 793*x^11 + 2223*x^12 + 6328*x^13 + 17578*x^14 + ...
such that A(x - x^2 + x^3 - x^4) = x.
MAPLE
F:= RootOf(y-y^2+y^3-y^4=x, y):
S:= series(F, x, 40):
seq(coeff(S, x, n), n=0..39); # Robert Israel, Jan 08 2019
MATHEMATICA
CoefficientList[InverseSeries[Series[y - y^2 + y^3 - y^4, {y, 0, 30}], x], x]
g[d_] := g[d] = If[OddQ[d], 3, 1]; f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x - 1, y, 0] + f[x, y - If[d == 0, 1, g[d]], If[d == 0, 1, g[d] + d]]]]; Join[{0}, Table[f[n - 1, n - 1, 0], {n, 30}]] (* David Scambler, May 09 2012 *)
PROG
(Maxima)
a(n):=if n<2 then n else (-1)^(n+1)*sum((sum(binomial(j, n-3*k+2*j-1)*(-1)^(2*j-k)*binomial(k, j), j, 0, k))*binomial(n+k-1, n-1), k, 1, n-1)/n; /* Vladimir Kruchinin, May 10 2011 */
(PARI)
x='x+O('x^66); Vec(serreverse(x-x^2+x^3-x^4)) /* Joerg Arndt, May 12 2011 */
(Sage) # uses[Reversion from A063022]
Reversion(x - x^2 + x^3 - x^4, 30) # Peter Luschny, Jan 08 2019
CROSSREFS
Sequence in context: A351969 A369444 A371716 * A369845 A365756 A183156
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Jul 05 2001
STATUS
approved