login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278429 a(n) = Sum_{k=0..n} binomial(k+n-2,k)*binomial(2*n+1,k+n+1). 1
1, 3, 16, 102, 699, 4973, 36194, 267480, 1998565, 15057255, 114179652, 870351386, 6662847871, 51189449457, 394476780694, 3047878296556, 23602623675273, 183142111511819, 1423578146798168, 11082963785614926, 86405502413568259 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..500

FORMULA

G.f.: x*(1-2*x*C(2*x))/sqrt(1-8*x)/(x*C(2*x))/(1-x*C(2*x))^3, where C(x) is g.f. of Catalan numbers.

a(n) = binomial(2n+1, n+1) * 2F1(n-1, -n; n+2; -1). - Jean-François Alcover, Nov 22 2016

a(n) ~ 2^(3*n+4)/(27*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 22 2016

MATHEMATICA

Table[Binomial[2*n+1, n+1]*Hypergeometric2F1[n-1, -n, n+2, -1], {n, 0, 20}] (* Jean-François Alcover, Nov 22 2016 *)

PROG

(Maxima)

C(x):=(1-sqrt(1-4*x))/(2*x);

taylor(x/sqrt(1-8*x)/(x*C(2*x))/(1-x*C(2*x))^3*(1-2*x*C(2*x)), x, 0, 10);

(MAGMA) m:=30; [&+[Binomial(k+n-2, k)*Binomial(2*n+1, k+n+1): k in [0..m]]: n in [0..30]]; // Vincenzo Librandi, Nov 22 2016

(PARI) a(n) = sum(k=0, n, binomial(k+n-2, k)*binomial(2*n+1, k+n+1)); \\ Indranil Ghosh, Mar 03 2017

CROSSREFS

Cf. A000108.

Sequence in context: A009007 A000949 A091637 * A207434 A074542 A105622

Adjacent sequences:  A278426 A278427 A278428 * A278430 A278431 A278432

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Nov 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 15:17 EST 2020. Contains 331961 sequences. (Running on oeis4.)