login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219613 E.g.f. tan(x/(1-x)). 6
0, 1, 2, 8, 48, 376, 3600, 40592, 525952, 7692928, 125303040, 2248366592, 44055035904, 935800603648, 21417131939840, 525346642337792, 13748654428323840, 382362034331877376, 11260657076602208256, 350082293087247269888, 11457214800338786713600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Take each set partition of {1,2,...,n} into an odd number of blocks.  Linearly order the elements within each block then form a "zag" permutation with the smallest element from each block.  Here a "zag" permutation is a permutation a[1],a[2],...,a[k] such that a[1] < a[2] > a[3] < ... > a[k].  a(n) is the number of ways to order the blocks in accordance with each "zag" permutation.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 144

FORMULA

a(n) ~ 4/(Pi*(2+Pi))* n! * (1+2/Pi)^n. - Vaclav Kotesovec, Nov 25 2012

E.g.f.: x/(1-x)/T(0), where T(k) = 4*k+1 - x^2/((4*k+3)*(1-x)^2 - x^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2013

EXAMPLE

a(3) = 8: The set partitions of {1,2,3} into an odd number of blocks are {1,2,3} and {1}{2}{3}. There are 6 ways to linearly order the elements of {1,2,3}. There are 2 such ways to order the blocks of the set partition {1}{2}{3}: {1}{3}{2} and {2}{3}{1}. 6+2=8.

MATHEMATICA

nn=21; Range[0, nn]!CoefficientList[Series[Tan[x/(1-x)], {x, 0, nn}], x]

CROSSREFS

Cf. A000182, A080832.

Sequence in context: A177388 A211196 A334856 * A124453 A211827 A322339

Adjacent sequences:  A219610 A219611 A219612 * A219614 A219615 A219616

KEYWORD

nonn

AUTHOR

Geoffrey Critzer, Nov 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 06:30 EDT 2021. Contains 343965 sequences. (Running on oeis4.)