login
A177388
O.g.f.: Sum_{n>=0} Product_{k=1..n} sin(k*arcsin(2x)).
2
1, 2, 8, 48, 368, 3488, 39408, 517536, 7747552, 130224448, 2428303280, 49745334816, 1110519910176, 26832869319872, 697671946188128, 19422303020653632, 576390053072381888, 18164695560213480064
OFFSET
0,2
LINKS
FORMULA
O.g.f.: A(x) = G(arcsin(2x)) where G(x) = e.g.f. of A177387.
a(n) ~ c * (4/(Pi*log(2)))^n * n! * n^(1/6), where c = 1.01529686... . - Vaclav Kotesovec, Nov 04 2014
EXAMPLE
O.g.f.: A(x) = 1 + 2*x + 8*x^2 + 48*x^3 + 368*x^4 + 3488*x^5 + ...
Let G(x) be the e.g.f. of A177387:
G(x) = 1 + x + 4*x^2/2! + 35*x^3/3! + 536*x^4/4! + ...
then A(x) = G(arcsin(2*x)).
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Ogf); Ogf=sum(m=0, n, prod(k=1, m, sin(k*asin(2*X)))); polcoeff(Ogf, n)}
CROSSREFS
Cf. A177387.
Sequence in context: A225042 A326887 A095989 * A211196 A334856 A219613
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 15 2010
STATUS
approved