This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177390 Triangle T where the g.f. of row n of T^(2n) = (2n^2 + y)^n for n>=0, as read by rows, where T^n denotes the n-th matrix power of T. 5
 1, 1, 1, 10, 4, 1, 447, 72, 9, 1, 50040, 4624, 264, 16, 1, 10435970, 683300, 23750, 700, 25, 1, 3470932404, 178979256, 4569480, 84840, 1530, 36, 1, 1677020809366, 72215891104, 1489987002, 20776980, 241325, 2940, 49, 1, 1106343610197376 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Analogous to Pascal's triangle, C, which obeys a similar rule: the g.f. of row n of C^(2n) = (2n + y)^n for n>=0. Conjecture: for all integer k, there exists an integer triangle J such that the g.f. of row n of J^(k*n) = (k*n^2 + y)^n for n>=0. LINKS EXAMPLE Triangle T begins: 1; 1,1; 10,4,1; 447,72,9,1; 50040,4624,264,16,1; 10435970,683300,23750,700,25,1; 3470932404,178979256,4569480,84840,1530,36,1; 1677020809366,72215891104,1489987002,20776980,241325,2940,49,1; 1106343610197376,41253720775296,725138126272,8309193088,73585120,586432,5152,64,1; 953498812570622640,31544658525648240,487943071058088,4827635270640,35544216204,218340360,1269324,8424,81,1; ... Matrix square T^2 begins: 1; 2,1; <== (2 + y)^1 = g.f. for row 1 of T^2 24,8,1; 1056,180,18,1; 114496,11456,672,32,1; 23356640,1627600,60400,1800,50,1; ... Matrix power T^4 begins: 1; 4,1; 64,16,1; <== (2*2^2 + y)^2 = g.f. for row 2 of T^4 2904,504,36,1; 301824,34048,1920,64,1; 59043680,4635200,186800,5200,100,1; ... Matrix power T^6 begins: 1; 6,1; 120,24,1; 5832,972,54,1; <== (2*3^2 + y)^3 = g.f. for row 3 of T^6 598080,72384,3744,96,1; 113094720,9838800,408000,10200,150,1; ... Matrix power T^8 begins: 1; 8,1; 192,32,1; 10128,1584,72,1; 1048576,131072,6144,128,1; <== (2*4^2 + y)^4 = g.f. for row 4 of T^8 193866560,18284800,752800,16800,200,1; ... PROG (PARI) {T(n, k, p=2)=local(M=Mat(1), N, L); for(i=1, n, N=M; M=matrix(#N+1, #N+1, r, c, if(r>=c, if(r<=#N, (N^(p*(#N)))[r, c], polcoeff((x+p*(#M)^2)^(#M), c-1)))); L=sum(i=1, #M, -(M^0-M)^i/i); M=sum(i=0, #M, (L/p/(#N))^i/i!); ); M[n+1, k+1]} CROSSREFS Cf. columns: A177391, A177392, A177393, row sums: A177394. Cf. variant: A132870. Sequence in context: A028967 A097530 A063565 * A082961 A065194 A113315 Adjacent sequences:  A177387 A177388 A177389 * A177391 A177392 A177393 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, May 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:57 EDT 2019. Contains 327136 sequences. (Running on oeis4.)