login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177385
E.g.f.: Sum_{n>=0} Product_{k=1..n} sinh(k*x).
9
1, 1, 4, 37, 616, 16081, 605164, 31011457, 2076192976, 175951716481, 18411425885524, 2331339303739777, 351341718484191736, 62144180030978834881, 12748469150999320273084, 3002313213700366145858497
OFFSET
0,3
COMMENTS
Compare to the e.g.f. for A002105, the reduced tangent numbers:
. Sum_{n>=0} A002105(n+1)*x^n/n! = Sum_{n>=0} Product_{k=1..n} tanh(k*x).
Limit n->infinity n!*A177386(n) / (2^n*A177385(n)) = 1. - Vaclav Kotesovec, Nov 06 2014
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^2, where d = A249748 = 1.04689919262595424111342518325311817976789046475647184115584744582777576864..., c = 0.880333778211172907563073031129920597506533414605109200048966773434616066... . - Vaclav Kotesovec, Nov 04 2014
EXAMPLE
E.g.f: A(x) = 1 + x + 4*x^2/2! + 37*x^3/3! + 616*x^4/4! +...
A(x) = 1 + sinh(x) + sinh(x)*sinh(2x) + sinh(x)*sinh(2x)*sinh(3x) + ...
MATHEMATICA
Table[n!*SeriesCoefficient[Sum[Product[Sinh[k*x], {k, 1, j}], {j, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 01 2014 *)
nn=20; tab = ConstantArray[0, nn]; tab[[1]] = Series[Sinh[x], {x, 0, nn}]; Do[tab[[k]] = Series[tab[[k-1]]*Sinh[k*x], {x, 0, nn}], {k, 2, nn}]; Flatten[{1, Rest[CoefficientList[Sum[tab[[k]], {k, 1, nn}], x] * Range[0, nn]!]}] (* Vaclav Kotesovec, Nov 04 2014 (more efficient) *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, sinh(k*X))); n!*polcoeff(Egf, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 15 2010
STATUS
approved