login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177382
E.g.f.: Sum_{n>=0} Product_{k=1..n} tan(k*x).
3
1, 1, 4, 38, 656, 17776, 695104, 37049648, 2581673216, 227817246976, 24829660693504, 3275474443371008, 514345822537650176, 94806411271686270976, 20269838348763427323904, 4975513260049237751994368
OFFSET
0,3
COMMENTS
Compare to an e.g.f. of A000182, the tangent numbers:
Sum_{n>=0} A000182(n)*x^n/n! = Sum_{n>=0} Product_{k=1..n} tanh(k*x).
LINKS
FORMULA
From Vaclav Kotesovec, Nov 02 2014: (Start)
a(n) ~ (n!)^2 / (sqrt(2) * G^(n+1)).
a(n) ~ Pi * sqrt(2) * n^(2*n+1) / (exp(2*n) * G^(n+1)), where G = A006752 = 0.915965594177219... is Catalan's constant.
(End)
EXAMPLE
E.g.f.: 1 + x + 4*x^2/2! + 38*x^3/3! + 656*x^4/4! + 17776*x^5/5! +...
where
A(x) = 1 + tan(x) + tan(x)*tan(2*x) + tan(x)*tan(2*x)*tan(3*x) + tan(x)*tan(2*x)*tan(3*x)*tan(4*x) + tan(x)*tan(2*x)*tan(3*x)*tan(4*x)*tan(5*x) +...
MATHEMATICA
nmax = 20; CoefficientList[Series[Sum[Product[Tan[k*x], {k, 1, n}], {n, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 02 2020 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, tan(k*X))); n!*polcoeff(Egf, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 11 2010
STATUS
approved