login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177383
G.f. satisfies: [x^n] A(x)^(n+1) = [x^n] A(x)^(n+2) for n>1 with A'(0)=A(0)=1.
2
1, 1, -3, 18, -145, 1398, -15330, 186004, -2455893, 34903110, -529903726, 8547005820, -145847288730, 2624318836412, -49658727391620, 985921121129832, -20496980960236365, 445413655950148710, -10100793273684125430
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x * (A(x) - x*A'(x)) / A(x)^3. - Paul D. Hanna, Aug 04 2014
Let G(x) be the g.f. of A177384, then
. a(n) = [x^n] G(x)^(-n+1)/(-n+1) for n>1,
. A(x) = G(x/A(x)) so that A(x) = x/Series_Reversion(x*G(x))
where G(x) = 1 + x/(G(x) + x*G'(x)).
a(n) ~ c * (-1)^(n+1) * n! * n^4, where c = 0.0147556981601927885048672335828437... (same as for A182304). - Vaclav Kotesovec, Jul 28 2014
a(n) / A177384(n) ~ exp(1). - Vaclav Kotesovec, Mar 06 2020
EXAMPLE
G.f.: A(x) = 1 + x - 3*x^2 + 18*x^3 - 145*x^4 + 1398*x^5 +...
Coefficients in the initial powers of A(x) begin:
[1,. 1, -3,. 18,. -145,. 1398,. -15330,. 186004,. -2455893,...];
[1,. 2, -5,. 30,. -245,. 2398,. -26670,. 327740,. -4376445,...];
[1,. 3,(-6), 37,. -309,. 3081,. -34806,. 433470,. -5855301,...];
[1,. 4,(-6),(40), -345,. 3516,. -40398,. 510120,. -6971325,...];
[1,. 5, -5, (40),(-360), 3761,. -43995,. 563460,. -7790675,...];
[1,. 6, -3,. 38, (-360),(3864), -46049,. 598266,. -8368635,...];
[1,. 7,. 0,. 35,. -350, (3864),(-46928), 618465,. -8751225,...];
[1,. 8,. 4,. 32,. -334,. 3792, (-46928),(627264), -8976609,...];
[1,. 9,. 9,. 30,. -315,. 3672,. -46284, (627264),(-9076320),...];
[1, 10, 15,. 30,. -295,. 3522,. -45180,. 620560, (-9076320),...];
where the above terms in parenthesis illustrate the property
that the coefficients of x^n in A(x)^(n+1) and A(x)^(n+2) are equal.
Also, the same terms derive A177384(n) = [x^n] A(x)^(n+1)/(n+1):
[1, 1, -2, 10, -72, 644, -6704, 78408, -1008480, 14065744, ...]
where g.f. G(x) of A177384 satisfies 1/x*d/dx[xG(x)]^2/2 = x+d/dx xG(x):
d/dx x*G(x) = 1 + 2*x - 6*x^2 + 40*x^3 - 360*x^4 + 3864*x^5 -...
d/dx [x*G(x)]^2/2 = x + 3*x^2 - 6*x^3 + 40*x^4 - 360*x^5 + 3864*x^6 -...
PROG
(PARI) {a(n)=local(G=1+x+x*O(x^n), H); for(i=1, n, G=1+x/(G+x*deriv(G)+x*O(x^n))); H=x/serreverse(x*G); polcoeff(H, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* From A(x) = 1 + x*(A(x) - x*A'(x)) / A(x)^3 : */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*(A-x*A')/(A^3 +x*O(x^n))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 15 2010
STATUS
approved