login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379099
a(n) = Sum_{k=0..n} binomial(2*k, k)*binomial(2*n, n)/(n + 1). Row sums of A379100.
0
1, 3, 18, 145, 1386, 14742, 168300, 2019303, 25135110, 321849814, 4215006588, 56222048610, 761436454492, 10446021648900, 144895117640040, 2029085114629545, 28652994844093170, 407600869429602090, 5836323240704117700, 84058779645184757490, 1217059539049881032220
OFFSET
0,2
FORMULA
a(n) = CatalanNumber(n)*binomial(2*n, n)*hypergeom([1, -n], [1/2 - n], 1/4).
a(n) = A000108(n) * A006134(n).
MAPLE
CatalanNumber := n -> binomial(2*n, n)/(n + 1):
a := n -> CatalanNumber(n)*binomial(2*n, n)*hypergeom([1, -n], [1/2 - n], 1/4):
seq(simplify(a(n)), n = 0..20);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Peter Luschny, Dec 15 2024
STATUS
approved