login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177380
E.g.f. satisfies: A(x) = 1+x + x*log(A(x)).
6
1, 1, 2, 3, -4, -50, -36, 2058, 10800, -131616, -1975680, 7741800, 417480480, 1307617584, -101626746144, -1284067345680, 25419094122240, 791333924647680, -3900043588999680, -472446912421801728, -3183064994777932800
OFFSET
0,3
COMMENTS
The signs have a complex structure; are they periodic after some point?
LINKS
FORMULA
E.g.f.: A(x) = 1 + Series_Reversion( x/(1 + log(1+x)) ).
...
Let G(x) = e.g.f. of A138013, then G(x) and A(x) satisfy:
(1) [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)! for n>=1;
(2) A(x/(1 - x*G(x))) = 1/(1 - x*G(x));
(3) G(x) = 1 - log(1 - x*G(x)) = Series_Reversion(x/(1-log(1-x)))/x.
...
Let F(x) = e.g.f. of A177379, then F(x) and A(x) satisfy:
(4) [x^n] A(x)^(n+1)/(n+1) = A177379(n)/n! for n>=0;
(5) A(x*F(x)) = F(x) and F(x/A(x)) = A(x);
(6) F(x) = 1/(1 - x*G(x)) = 1/(1 - Series_Reversion(x/(1-log(1-x)))).
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.3745570107437... (see A238274). - Vaclav Kotesovec, Jan 11 2014
EXAMPLE
E.g.f: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 4*x^4/4! - 50*x^5/5! +...
log(A(x)) = 2*x/2! + 3*x^2/3! - 4*x^3/4! - 50*x^4/5! - 36*x^5/5! +...
...
Coefficients in the initial powers of A(x) begin:
[1,(1),(1), 1/2, -1/6, -5/12, -1/20, 49/120, 15/56, -457/1260,...];
[1, 2,(3),(3), 5/3, -1/6, -61/60, -17/60, 272/315, 451/630,...];
[1, 3, 6,(17/2),(17/2), 21/4, 3/5, -83/40, -187/168, 115/84,...];
[1, 4, 10, 18,(73/3),(73/3), 163/10, 131/30, -261/70, -1093/315,...];
[1, 5, 15, 65/2, 325/6,(847/12),(847/12), 1205/24, 9551/504,...];
[1, 6, 21, 53, 104, 327/2,(4139/20),(4139/20), 6469/42, 7414/105,...];
[1, 7, 28, 161/2, 1085/6, 3955/12, 4949/10,(24477/40),(24477/40),...];
[1, 8, 36, 116, 878/3, 1810/3, 15569/15, 7509/5,(114760/63),(114760/63), ...]; ...
where the coefficients in parenthesis illustrate the property
that the coefficients of x^n and x^(n+1) in A(x)^n are equal:
[x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)!,
where G(x) = e.g.f. of A138013 begins:
G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ...
and satisfies: exp(1 - G(x)) = 1 - x*G(x).
MATHEMATICA
CoefficientList[1+InverseSeries[Series[x/(1 + Log[1+x]), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 11 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(1+serreverse(x/(1+log(1+x+x*O(x^n)))), n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x+x*log(A+O(x^n))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 14 2010
STATUS
approved