Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 24 2014 17:08:00
%S 1,1,2,3,-4,-50,-36,2058,10800,-131616,-1975680,7741800,417480480,
%T 1307617584,-101626746144,-1284067345680,25419094122240,
%U 791333924647680,-3900043588999680,-472446912421801728,-3183064994777932800
%N E.g.f. satisfies: A(x) = 1+x + x*log(A(x)).
%C The signs have a complex structure; are they periodic after some point?
%H Vaclav Kotesovec, <a href="/A177380/b177380.txt">Table of n, a(n) for n = 0..420</a>
%F E.g.f.: A(x) = 1 + Series_Reversion( x/(1 + log(1+x)) ).
%F ...
%F Let G(x) = e.g.f. of A138013, then G(x) and A(x) satisfy:
%F (1) [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)! for n>=1;
%F (2) A(x/(1 - x*G(x))) = 1/(1 - x*G(x));
%F (3) G(x) = 1 - log(1 - x*G(x)) = Series_Reversion(x/(1-log(1-x)))/x.
%F ...
%F Let F(x) = e.g.f. of A177379, then F(x) and A(x) satisfy:
%F (4) [x^n] A(x)^(n+1)/(n+1) = A177379(n)/n! for n>=0;
%F (5) A(x*F(x)) = F(x) and F(x/A(x)) = A(x);
%F (6) F(x) = 1/(1 - x*G(x)) = 1/(1 - Series_Reversion(x/(1-log(1-x)))).
%F Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.3745570107437... (see A238274). - _Vaclav Kotesovec_, Jan 11 2014
%e E.g.f: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 4*x^4/4! - 50*x^5/5! +...
%e log(A(x)) = 2*x/2! + 3*x^2/3! - 4*x^3/4! - 50*x^4/5! - 36*x^5/5! +...
%e ...
%e Coefficients in the initial powers of A(x) begin:
%e [1,(1),(1), 1/2, -1/6, -5/12, -1/20, 49/120, 15/56, -457/1260,...];
%e [1, 2,(3),(3), 5/3, -1/6, -61/60, -17/60, 272/315, 451/630,...];
%e [1, 3, 6,(17/2),(17/2), 21/4, 3/5, -83/40, -187/168, 115/84,...];
%e [1, 4, 10, 18,(73/3),(73/3), 163/10, 131/30, -261/70, -1093/315,...];
%e [1, 5, 15, 65/2, 325/6,(847/12),(847/12), 1205/24, 9551/504,...];
%e [1, 6, 21, 53, 104, 327/2,(4139/20),(4139/20), 6469/42, 7414/105,...];
%e [1, 7, 28, 161/2, 1085/6, 3955/12, 4949/10,(24477/40),(24477/40),...];
%e [1, 8, 36, 116, 878/3, 1810/3, 15569/15, 7509/5,(114760/63),(114760/63), ...]; ...
%e where the coefficients in parenthesis illustrate the property
%e that the coefficients of x^n and x^(n+1) in A(x)^n are equal:
%e [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)!,
%e where G(x) = e.g.f. of A138013 begins:
%e G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ...
%e and satisfies: exp(1 - G(x)) = 1 - x*G(x).
%t CoefficientList[1+InverseSeries[Series[x/(1 + Log[1+x]), {x, 0, 20}], x],x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jan 11 2014 *)
%o (PARI) {a(n)=n!*polcoeff(1+serreverse(x/(1+log(1+x+x*O(x^n)))),n)}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x+x*log(A+O(x^n)));n!*polcoeff(A,n)}
%Y Cf. A177379, A138013, A038037, A238274.
%K sign
%O 0,3
%A _Paul D. Hanna_, May 14 2010