OFFSET
0,3
COMMENTS
FORMULA
E.g.f.: A(x) = (1/x)*Series_Reversion[ x/(1 - log(1-x)) ].
E.g.f.: A(x) = 1 + Series_Reversion( (1-exp(-x))/(1+x) ).
E.g.f. A(x) satisfies: exp(1 - A(x)) = 1 - x*A(x).
a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^n * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
a(n) = sum(n!/(n+1-k)! * |stirling1(n,k)|, k=0..n). - Michael D. Weiner, Dec 23 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3x^2/2! + 17x^3/3! + 146x^4/4! + 1694x^5/5! + ...
where A(x) = 1 - log(1 - x*A(x)):
A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/3 +...+ x^n*A(x)^n/n +...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[(1-E^(-x))/(1+x), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/x*serreverse(x/(1-log(1-x + x*O(x^n) ))), n+1)}
(PARI) {a(n)=n!*polcoeff(1 + serreverse((1-exp(-x+x^2*O(x^n)))/(1+x +x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 27 2008
STATUS
approved