login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138013
E.g.f. satisfies: A(x) = 1 - log(1 - x*A(x)).
21
1, 1, 3, 17, 146, 1694, 24834, 440586, 9180800, 219829536, 5948287560, 179508872520, 5978006444112, 217772950035120, 8614798644364080, 367768502385434640, 16852524904388586240, 825075552824125305600, 42981992589364756939008, 2373967488394457834095872
OFFSET
0,3
COMMENTS
a(n) = A038037(n+1)/(n+1) for n>=0 where A038037(n) is the number of labeled rooted compound windmills (mobiles) with n nodes.
FORMULA
E.g.f.: A(x) = (1/x)*Series_Reversion[ x/(1 - log(1-x)) ].
E.g.f.: A(x) = 1 + Series_Reversion( (1-exp(-x))/(1+x) ).
E.g.f. A(x) satisfies: exp(1 - A(x)) = 1 - x*A(x).
a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^n * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
a(n) = sum(n!/(n+1-k)! * |stirling1(n,k)|, k=0..n). - Michael D. Weiner, Dec 23 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3x^2/2! + 17x^3/3! + 146x^4/4! + 1694x^5/5! + ...
where A(x) = 1 - log(1 - x*A(x)):
A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/3 +...+ x^n*A(x)^n/n +...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[(1-E^(-x))/(1+x), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/x*serreverse(x/(1-log(1-x + x*O(x^n) ))), n+1)}
(PARI) {a(n)=n!*polcoeff(1 + serreverse((1-exp(-x+x^2*O(x^n)))/(1+x +x*O(x^n))), n)}
CROSSREFS
Cf. A038037.
Sequence in context: A241805 A368233 A277466 * A052807 A080253 A234289
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 27 2008
STATUS
approved