login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052807
Expansion of e.g.f. -LambertW(log(1-x)).
17
0, 1, 3, 17, 146, 1704, 25284, 456224, 9702776, 237711888, 6593032560, 204212077992, 6986942528400, 261700394006232, 10650713784774504, 468007296229553880, 22083086552247101184, 1113646609708909274880
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
E.g.f. of A052813 equals exp(A(x)) = -A(x)/log(1-x). a(n) = n!*Sum_{k=0..n-1} A052813(k)/k!/(n-k). - Paul D. Hanna, Jul 19 2006
LINKS
FORMULA
a(n) = Sum_{k=1..n} |Stirling1(n, k)|*k^(k-1). - Vladeta Jovovic, Sep 17 2003
E.g.f. satisfies: A(x) = 1/(1-x)^A(x). - Paul D. Hanna, Jul 19 2006
a(n) ~ n^(n-1)*exp((exp(-1)-1)*n+1/2) / (exp(exp(-1))-1)^(n-1/2). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: Series_Reversion( 1 - exp(-x*exp(-x)) ). - Seiichi Manyama, Sep 08 2024
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! +...
A(x)/exp(A(x)) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +...
MAPLE
spec := [S, {B=Cycle(Z), C=Set(S), S=Prod(C, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
max = 17; se = Series[-ProductLog[-Log[-(-1 + x)^(-1)]] , {x, 0, max}]; Join[{0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) * Range[max]!] (* Jean-François Alcover, Jun 24 2013 *)
CoefficientList[Series[-LambertW[-Log[-1/(-1 + x)]], {x, 0, 50}], x]*
Range[0, 50]! (* G. C. Greubel, Jun 18 2017 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/(1-x+x*O(x^n))^A); n!*polcoeff(log(A), n)} \\ Paul D. Hanna, Jul 19 2006
(PARI) x = 'x + O('x^30); concat(0, Vec(serlaplace(-lambertw(log(1-x))))) \\ Michel Marcus, Jun 19 2017
CROSSREFS
Cf. A006963, A048802, A052813 (exp(A(x))), A277489.
Sequence in context: A368233 A277466 A138013 * A080253 A234289 A009813
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f. by Vaclav Kotesovec, Oct 18 2013
STATUS
approved