The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048802 Number of labeled rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.) 18
 1, 3, 16, 133, 1521, 22184, 393681, 8233803, 198342718, 5408091155, 164658043397, 5537255169582, 203840528337291, 8153112960102283, 352079321494938344, 16325961781591781401, 809073412162081974237, 42674870241038732398720, 2386963662244981472850709 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 861 B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014. Index entries for sequences related to rooted trees FORMULA E.g.f.: B(exp(x)-1) where B is e.g.f. of A000169. E.g.f.: Series_Reversion( log(1 + x*exp(-x)) ). - Paul D. Hanna, Jan 24 2016 a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-1). - Vladeta Jovovic, Sep 17 2003 Stirling transform of A000169. - Michael Somos, Jun 09 2012 a(n) ~ sqrt(1+exp(1)) * n^(n-1) / (exp(n) * (log(1+exp(-1)))^(n-1/2)). - Vaclav Kotesovec, Feb 17 2014 EXAMPLE G.f. = x + 3*x^2 + 16*x^3 + 133*x^4 + 1521*x^5 + 22184*x^6 + 393681*x^7 + ... MATHEMATICA nn=20; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[ ComposeSeries[ Series[t, {x, 0, nn}], Series[Exp[x]-1 , {x, 0, nn}]], x] (* Geoffrey Critzer, Sep 16 2012 *) PROG (PARI) {a(n) = sum( k=1, n, stirling(n, k, 2) * k^(k - 1))}; /* Michael Somos, Jun 09 2012 */ (PARI) {a(n) = n! * polcoeff( serreverse( log(1 + x*exp(-x +x*O(x^n))) ), n)} for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 24 2016 CROSSREFS Cf. A036249, A038052, A058863, A052807. Sequence in context: A241464 A341852 A141628 * A213357 A119392 A307979 Adjacent sequences: A048799 A048800 A048801 * A048803 A048804 A048805 KEYWORD nonn AUTHOR Christian G. Bower, Mar 15 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 07:17 EST 2023. Contains 367717 sequences. (Running on oeis4.)