login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048803
a(0) = 1, a(1) = 1; for n > 1, a(n) = lcm( 1, 2, ..., n, a(1)*a(n-1), a(2)*a(n-2), ..., a(n-1)*a(1) ).
18
1, 1, 2, 6, 12, 60, 360, 2520, 5040, 15120, 151200, 1663200, 9979200, 129729600, 1816214400, 27243216000, 54486432000, 926269344000, 5557616064000, 105594705216000, 1055947052160000, 22174888095360000, 487847538097920000, 11220493376252160000, 67322960257512960000
OFFSET
0,3
COMMENTS
Squarefree factorials: a(1) = 1, a(n+1) = a(n)* largest squarefree divisor of (n+1). - Amarnath Murthy, Nov 28 2004
LCM over all partitions of n of the product of the part sizes in the partition. - Franklin T. Adams-Watters, May 04 2010
a(n) is the product of the lcm of the set of prime factors of k over the range k = 1..n. - Peter Luschny, Jun 10 2011
a(n) is a divisor of n! and n!/a(n) = A085056(n). - Robert FERREOL, Aug 09 2021
In consequence of the definition, pseudo-binomial coefficients a(m+n)/(a(m)*a(n)) are natural numbers for all whole numbers m and n, and this is the minimal increasing sequence (for n >= 1) with that property. In consequence of the comment of Adams-Watters, the corresponding pseudo-multinomial coefficients are natural numbers as well. - Hal M. Switkay, May 26 2024
REFERENCES
Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued Polynomials, AMS, Providence, RI, 1997. Math. Rev. 98a:13002. See p. 246.
LINKS
Abdelmalek Bedhouche and Bakir Farhi, On some products taken over the prime numbers, arXiv:2207.07957 [math.NT], 2022. See rho_n p. 3.
Bakir Farhi, On the derivatives of the integer-valued polynomials, arXiv:1810.07560 [math.NT], 2018.
FORMULA
a(n) = Product_{p prime} p^floor(n/p). See Farhi link p. 16. - Michel Marcus, Oct 18 2018
For n >=1, a(n) = lcm(1^floor(n/1),2^floor(n/2),...,n^floor(n/n)). - Robert FERREOL, Aug 05 2021
Rephrasing Murthy's comment: a(n) = a(n-1) * A007947(n). - Hal M. Switkay, Dec 31 2024
MAPLE
A048803 := proc(n) local i; mul(ilcm(op(numtheory[factorset](i))), i=1..n) end; seq(A048803(i), i=0..22); # Peter Luschny, Jun 10 2011
a := n -> mul(NumberTheory:-Radical(i), i=1..n): # Peter Luschny, Mar 14 2022
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n-1] First @ Select[Reverse @ Divisors[n], SquareFreeQ, 1]; Array[a, 22, 0] (* Jean-François Alcover, May 04 2011 *)
PROG
(PARI) a(n)=local(f); f=n>=0; if(n>1, forprime(p=2, n, f*=p^(n\p))); f
(Haskell)
a048803 n = a048803_list !! n
a048803_list = scanl (*) 1 a007947_list
-- Reinhard Zumkeller, Jul 01 2013
(SageMath)
from functools import cache
@cache
def a_rec(n):
if n == 0: return 1
return radical(n) * a_rec(n - 1)
print([a_rec(n) for n in range(23)]) # Peter Luschny, Dec 12 2023
CROSSREFS
Partial products of A007947.
Sequence in context: A182862 A072938 A160274 * A068625 A162935 A328459
KEYWORD
nonn,nice,changed
AUTHOR
Christian G. Bower, Apr 15 1999
EXTENSIONS
Entry improved by comments from Michael Somos, Nov 24 2001
STATUS
approved