login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119392
a(n) = n!*Sum_{k=0..n} Stirling2(n,k)/k!.
2
1, 1, 3, 16, 133, 1571, 24721, 496168, 12317761, 369451477, 13135552831, 545021905176, 26051269951213, 1418976050686351, 87262518335077541, 6010361475663954256, 460405692649973927041, 38981134670714611635913
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0,2*sqrt(exp(x)-1)).
E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} 1/(1-k*x). [From Paul D. Hanna, Dec 13 2011]
E.g.f.: 1 + x*(1 - E(0) )/(1-x) where E(k) = 1 - 1/(1-x*(k+1))/(k+1)/(1-x/(x-1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 133*x^4/4! +...
where A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x))/2! + x^3/((1-x)*(1-2*x)*(1-3*x))/3! +...
MAPLE
a:=n->sum(stirling2(n, j)*n!/j!, j=0..n):seq(a(n), n=0..15); # Zerinvary Lajos, Mar 19 2007
MATHEMATICA
Table[n!*Sum[StirlingS2[n, k]/k!, {k, 0, n}], {n, 0, 20}] (* Stefan Steinerberger, Nov 23 2007 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, x^m/m!/prod(k=1, m, 1-k*x +x*O(x^n))), n)} /* Paul D. Hanna */
CROSSREFS
Cf. A001569.
Sequence in context: A141628 A048802 A213357 * A307979 A129043 A182951
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 25 2006
EXTENSIONS
More terms from Stefan Steinerberger, Nov 23 2007
STATUS
approved