OFFSET
0,3
FORMULA
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0,2*sqrt(exp(x)-1)).
E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} 1/(1-k*x). [From Paul D. Hanna, Dec 13 2011]
E.g.f.: 1 + x*(1 - E(0) )/(1-x) where E(k) = 1 - 1/(1-x*(k+1))/(k+1)/(1-x/(x-1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 133*x^4/4! +...
where A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x))/2! + x^3/((1-x)*(1-2*x)*(1-3*x))/3! +...
MAPLE
a:=n->sum(stirling2(n, j)*n!/j!, j=0..n):seq(a(n), n=0..15); # Zerinvary Lajos, Mar 19 2007
MATHEMATICA
Table[n!*Sum[StirlingS2[n, k]/k!, {k, 0, n}], {n, 0, 20}] (* Stefan Steinerberger, Nov 23 2007 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, x^m/m!/prod(k=1, m, 1-k*x +x*O(x^n))), n)} /* Paul D. Hanna */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 25 2006
EXTENSIONS
More terms from Stefan Steinerberger, Nov 23 2007
STATUS
approved