login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119389 Numerator of (1^2/n + 2^2/(n-1) + ... + k^2/(n-k+1) + ... + (n-1)^2/2 + n^2/1). 0
1, 9, 34, 265, 186, 1141, 2868, 31401, 18635, 477301, 91192, 8051069, 4508441, 3336145, 22048024, 410111791, 223063947, 3057889621, 823596665, 706952715, 125961187, 6173866701, 9838037952, 521135614075, 275363139571 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

p divides a(p-1) for prime p>2. p divides a(2p-1) for all prime p. p divides a(3p-1) for all prime p. p divides a(4p-1) for all prime p except p=3. p divides a(5p-1) for prime p>3. p divides a(6p-1) for all prime except p=5. . p^2 divides a(p^2-1) for prime p>2. p^2 divides a(2p^2-1) for all prime p. p^2 divides a(3p^2-1) for all prime p. . p^3 divides a(p^3-1) for prime p>2. . p^k divides a(p^k-1) for prime p>2 and integer k>1. p^k divides a(m*p^k-1) for all prime p and integer m,k>1.

LINKS

Table of n, a(n) for n=1..25.

FORMULA

a(n) = Numerator[Sum[k^2/(n-k+1),{k,1,n}]]. a(n) = Numerator[HarmonicNumber[n]*(n+1)^2 - 3*n(n+1)/2]. a(n) = Numerator[A001008[n]/A002805[n]*(n+1)^2 - 3*A000217[n]].

MATHEMATICA

Numerator[Table[Sum[k^2/(n-k+1), {k, 1, n}], {n, 1, 50}]]

CROSSREFS

Cf. A027612, A001008, A002805, A000217.

Sequence in context: A050478 A204426 A154393 * A197273 A067960 A119757

Adjacent sequences:  A119386 A119387 A119388 * A119390 A119391 A119392

KEYWORD

frac,nonn

AUTHOR

Alexander Adamchuk, Jul 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 01:03 EDT 2021. Contains 347498 sequences. (Running on oeis4.)