login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027612
Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.
29
1, 5, 13, 77, 87, 223, 481, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 197698279, 201578155, 41054655, 13920029, 325333835, 990874363, 25128807667, 25472027467, 232222818803, 235091155703, 6897956948587, 6975593267347
OFFSET
1,2
COMMENTS
Numerator of a second-order harmonic number H(n, (2)) = Sum_{k=1..n} HarmonicNumber(k). - Alexander Adamchuk, Apr 12 2006
p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 06 2006
Denominator is A027611(n+1). p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 26 2006
a(n) = A213998(n,n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number.
FORMULA
From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = numerators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = numerators of (n+1)*(harmonic(n+1) - 1).
a(n) = numerators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator( Sum_{k=1..n} Sum_{i=1..k} 1/i ). - Alexander Adamchuk, Apr 12 2006
a(n) = numerator( Sum_{k=1..n} k/(n-k+1) ). - Alexander Adamchuk, Jul 26 2006
a(n) = numerator of integral_{x=1..n+1} floor((n+1)/x). - Jean-François Alcover, Jun 18 2013
MAPLE
a := n -> numer(add((n+1-j)/j, j=1..n));
seq(a(n), n = 1..29); # Peter Luschny, May 12 2023
MATHEMATICA
Numerator[Table[Sum[Sum[1/i, {i, 1, k}], {k, 1, n}], {n, 1, 30}]] (* Alexander Adamchuk, Apr 12 2006 *)
Numerator[Table[Sum[k/(n-k+1), {k, 1, n}], {n, 1, 50}]] (* Alexander Adamchuk, Jul 26 2006 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a027612 n = numerator $ sum $ zipWith (%) [1 .. n] [n, n-1 .. 1]
-- Reinhard Zumkeller, Jul 03 2012
(PARI) a(n) = numerator(sum(k=1, n, k/(n-k+1))); \\ Michel Marcus, Jul 14 2018
(Magma) [Numerator((&+[j/(n-j+1): j in [1..n]])): n in [1..30]]; // G. C. Greubel, Aug 23 2022
(SageMath) [numerator(n*(harmonic_number(n+1) - 1)) for n in (1..30)] # G. C. Greubel, Aug 23 2022
KEYWORD
nonn,easy,frac
AUTHOR
Glen Burch (gburch(AT)erols.com)
STATUS
approved