login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027614
Related to Clebsch-Gordan formulas.
2
1, 1, 3, 14, 80, 468, 2268, 10224, 313632, 9849600, 21954240, -8894136960, -105857556480, 20609598562560, 650835095904000, -80028503341516800, -5018759207362252800, 503681435808239001600, 56090762228110443724800
OFFSET
1,3
FORMULA
a(n) = (-1)^(n-1)*A179320(n)/2. - G. C. Greubel, Aug 23 2022
a(n) = (-1)^(n+1) * n! * b(n), where b(n) = (-1/(2*(n-1))) * Sum_{j=2..2*floor(n/2)} A123521(n, j)*b(n-j+1), b(1) = 1. - G. C. Greubel, Sep 01 2022
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, 2*(n-1), T[n-2, k-2] + Binomial[2*n-k-1, 2*n -2*k-1] ]]; (* T = A123521 *)
b[n_]:= b[n]= If[n==1, 1, (-1/(2*(n-1)))*Sum[b[n-j+1]*T[n, j], {j, 2, 2*Floor[n/2]}]];
A027614[n_]:= (-1)^(n+1)*n!*b[n];
Table[A027614[n], {n, 40}] (* G. C. Greubel, Sep 01 2022 *)
PROG
(PARI) {a(n)=local(A=2*x, B); for(m=2, n, B=(1-x)/(1+x+O(x^(n+3)))*subst(A, x, x/(1-x+O(x^(n+3)))^2); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); (-1)^(n-1)*n!*polcoeff(A, n)/2};
vector(20, n, a(n)) \\ G. C. Greubel, Aug 23 2022
(SageMath)
@CachedFunction
def T(n, k): # T = A123521
if (k==0): return 1
elif (k==1): return 2*(n-1)
else: return T(n-2, k-2) + binomial(2*n-k-1, 2*n-2*k-1)
@CachedFunction
def b(n):
if (n==1): return 1
else: return (-1/(2*(n-1)))*sum(T(n, j)*b(n-j+1) for j in (2..2*floor(n/2)))
def A027614(n): return (-1)^(n+1)*factorial(n)*b(n)
[A027614(n) for n in (1..40)] # G. C. Greubel, Sep 01 2022
CROSSREFS
Sequence in context: A218677 A353079 A305128 * A306040 A168592 A121873
KEYWORD
sign
AUTHOR
Allan Adler (ara(AT)zurich.ai.mit.edu), Dec 15 1997
STATUS
approved