OFFSET
1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..280
Allan Adler, Definition (plain tex file)
Sean A. Irvine, Java program (github)
FORMULA
a(n) = (-1)^(n-1)*A179320(n)/2. - G. C. Greubel, Aug 23 2022
a(n) = (-1)^(n+1) * n! * b(n), where b(n) = (-1/(2*(n-1))) * Sum_{j=2..2*floor(n/2)} A123521(n, j)*b(n-j+1), b(1) = 1. - G. C. Greubel, Sep 01 2022
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, 2*(n-1), T[n-2, k-2] + Binomial[2*n-k-1, 2*n -2*k-1] ]]; (* T = A123521 *)
b[n_]:= b[n]= If[n==1, 1, (-1/(2*(n-1)))*Sum[b[n-j+1]*T[n, j], {j, 2, 2*Floor[n/2]}]];
A027614[n_]:= (-1)^(n+1)*n!*b[n];
Table[A027614[n], {n, 40}] (* G. C. Greubel, Sep 01 2022 *)
PROG
(PARI) {a(n)=local(A=2*x, B); for(m=2, n, B=(1-x)/(1+x+O(x^(n+3)))*subst(A, x, x/(1-x+O(x^(n+3)))^2); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); (-1)^(n-1)*n!*polcoeff(A, n)/2};
vector(20, n, a(n)) \\ G. C. Greubel, Aug 23 2022
(SageMath)
@CachedFunction
def T(n, k): # T = A123521
if (k==0): return 1
elif (k==1): return 2*(n-1)
else: return T(n-2, k-2) + binomial(2*n-k-1, 2*n-2*k-1)
@CachedFunction
def b(n):
if (n==1): return 1
else: return (-1/(2*(n-1)))*sum(T(n, j)*b(n-j+1) for j in (2..2*floor(n/2)))
def A027614(n): return (-1)^(n+1)*factorial(n)*b(n)
[A027614(n) for n in (1..40)] # G. C. Greubel, Sep 01 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Allan Adler (ara(AT)zurich.ai.mit.edu), Dec 15 1997
STATUS
approved