login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027617
Number of permutations of n elements containing a 3-cycle.
3
0, 0, 0, 2, 8, 40, 200, 1400, 11200, 103040, 1030400, 11334400, 135766400, 1764963200, 24709484800, 370687116800, 5930993868800, 100826895769600, 1814871926067200, 34482566595276800, 689651331905536000, 14482682605174784000, 318619017313845248000
OFFSET
0,4
COMMENTS
a(n)/n! is asymptotic to 1-e^(-1/3) = 1 - A092615. - Michel Marcus, Aug 08 2013
LINKS
FORMULA
a(n) = n! * ( 1 - Sum_{k=0..floor(n/3)} (-1)^k / (3^k * k!) ).
E.g.f.: 1/(1-x) - exp(-x^3/3)/(1-x). - Geoffrey Critzer, Jan 23 2013
Recurrence: a(n) = n*a(n-1) - (n-2)*(n-1)*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 13 2013
Conjectures from Stéphane Rézel, Dec 11 2019: (Start)
Recurrence: a(n) = n*a(n-1), for n > 3 and n !== 0 (mod 3);
for k > 1, a(3*k) = a(3*k-1)*S(k)/S(k-1) where S(k) = 3*k*S(k-1) - (-1)^k with S(1) = 1.
(End)
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[1/(1-x)-Exp[-x^3/3]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 23 2013 *)
PROG
(PARI) a(n) = n! * (1 - sum(k=0, floor(n/3), (-1)^k/(k!*3^k) ) ); \\ Stéphane Rézel, Dec 11 2019
CROSSREFS
Column k=3 of A293211.
Sequence in context: A221587 A186947 A071007 * A187071 A154626 A003305
KEYWORD
nonn
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Geoffrey Critzer, Jan 23 2013
STATUS
approved