login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186947
a(n) = 4^n - n*2^n.
5
1, 2, 8, 40, 192, 864, 3712, 15488, 63488, 257536, 1038336, 4171776, 16728064, 67002368, 268206080, 1073250304, 4293918720, 17177640960, 68714758144, 274867945472, 1099490656256, 4398002470912, 17592093769728, 70368551239680, 281474574057472, 1125899067981824
OFFSET
0,2
COMMENTS
Binomial transform of A186948.
Second binomial transform of A186949.
FORMULA
G.f.: (1 - 6*x + 12*x^2)/((1 - 2*x)^2*(1 - 4*x)).
a(n) = 4*a(n-1) + 2^n*(n-2), n >= 1. - Vincenzo Librandi, Mar 13 2011
a(n) = 2^n*A000325(n) = 4^n*A002064(-n) for all n in Z. - Michael Somos, Jul 18 2018
From Elmo R. Oliveira, Sep 15 2024: (Start)
E.g.f.: exp(2*x)*(exp(2*x) - 2*x).
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) for n > 2. (End)
EXAMPLE
G.f. = 1 + 2*x + 8*x^2 + 40*x^3 + 192*x^4 + 864*x^5 + 3712*x^6 + ... - Michael Somos, Jul 18 2018
MATHEMATICA
Table[4^n-n 2^n, {n, 0, 30}] (* or *) LinearRecurrence[{8, -20, 16}, {1, 2, 8}, 30] (* Harvey P. Dale, Apr 23 2017 *)
PROG
(PARI) {a(n) = 2^n * (2^n - n)}; /* Michael Somos, Jul 18 2018 */
(Magma) [4^n - n*2^n: n in [0..30]]; // G. C. Greubel, Aug 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 01 2011
STATUS
approved