login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186949
a(n) = 2^n - 2*(binomial(1,n) - binomial(0,n)).
3
1, 0, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824
OFFSET
0,3
COMMENTS
Binomial transform is A186948.
Second binomial transform is A186947.
Inverse binomial transform is (-1)^n * A168277(n).
Essentially the same as A000079, A151821, A155559, A171449, and A171559.
FORMULA
G.f.: (1 - 2*x + 4*x^2)/(1-2*x).
a(n) = Sum_{k=0..n} binomial(n,k)*(3^k - 2*k).
E.g.f.: exp(2*x) - 2*x. - G. C. Greubel, Dec 01 2019
MAPLE
seq( `if`(n<2, 1-n, 2^n), n=0..30); # G. C. Greubel, Dec 01 2019
MATHEMATICA
Table[If[n<2, 1-n, 2^n], {n, 0, 30}] (* G. C. Greubel, Dec 01 2019 *)
PROG
(PARI) vector(31, n, if(n<3, 2-n, 2^(n-1))) \\ G. C. Greubel, Dec 01 2019
(Magma) [n lt 2 select 1-n else 2^n: n in [0..30]]; // G. C. Greubel, Dec 01 2019
(Sage) [1, 0]+[2^n for n in (2..30)] # G. C. Greubel, Dec 01 2019
(GAP) Concatenation([1, 0], List([2..30], n-> 2^n )); # G. C. Greubel, Dec 01 2019
CROSSREFS
Sequence in context: A233442 A373969 A046055 * A020707 A151821 A147639
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 01 2011
STATUS
approved