login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373969
The smallest number k whose divisors include exactly n Duffinian numbers (A003624).
0
1, 4, 8, 16, 32, 64, 128, 256, 512, 576, 1152, 1600, 2304, 4608, 3600, 6300, 7200, 18900, 20736, 32725, 14400, 28800, 50400, 56700, 108900, 57600, 100800, 111321, 176400, 129600, 226800, 229075, 360000, 630000, 435600, 333963, 518400, 1374450, 871200, 1001889
OFFSET
0,2
COMMENTS
Numbers of the form m = 2^(k+1), k >= 0, have exactly k divisors that are Duffinian numbers.
EXAMPLE
Since A003624(1) = 4, a(0) = 1.
The numbers 2 and 3 have no divisors that are Duffinian numbers and 4 = A003624(1), so a(1) = 4.
MATHEMATICA
f[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[30, 10^7] (* Amiram Eldar, Jul 19 2024 *)
PROG
(Magma) f:=func<n|n ne 1 and not IsPrime(n) and Gcd(n, DivisorSigma(1, n)) eq 1>; a:=[]; for n in [0..38] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
Sequence in context: A307870 A330873 A233442 * A046055 A186949 A020707
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Jul 12 2024
STATUS
approved