login
A373968
a(n) is the number of divisors of n that are Duffinian numbers (A003624).
1
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 3, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 1, 0, 0, 3, 5, 1, 0, 0, 1, 0, 1, 0, 4, 0, 0, 2, 1, 1, 1, 0, 3, 3, 0, 0, 2, 1, 0, 0, 2
OFFSET
1,8
FORMULA
a(p^k)) = k - 1, for p prime and k >= 1.
EXAMPLE
Since A003624(1) = 4 then a(1) = a(2) = a(3) = 0 and a(4) = 1.
a(8) = 2 because 8 has the divisors 4 = A003624(1) and 8 = A003624(2).
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 19 2024 *)
PROG
(Magma) f:=func<n|n ne 1 and not IsPrime(n) and Gcd(n, DivisorSigma(1, n)) eq 1>; [#[d:d in Divisors(k)|f(d)]:k in [1..100]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Jul 12 2024
STATUS
approved