login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183094
a(n) = number of powerful divisors d (excluding 1) of n.
4
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 3, 0, 0, 0, 2, 0
OFFSET
1,8
COMMENTS
a(n) = number of divisors d of n from set A001694(m) - powerful numbers for m >=2.
LINKS
D. Suryanarayana and R. Sitaramachandra Rao, The number of square-full divisors of an integer, Proc. Amer. Math. Soc. 34 (1972), 79-80.
FORMULA
a(n) = A000005(n) - A183095(n) = A005361(n) - 1.
a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = k-1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)*zeta(3)/zeta(6) - 1 = A082695 - 1 = 0.9435964368... . - Amiram Eldar, Jul 30 2022
EXAMPLE
For n = 12, set of such divisors is {4}; a(12) = 1.
MAPLE
f:= n -> convert(map(t->t[2], ifactors(n)[2]), `*`) - 1; # Robert Israel, Jul 14 2014
MATHEMATICA
powerfulQ[n_] := Min[ Last@# & /@ FactorInteger[n]] > 1; f[n_] := Length@ Select[ Divisors@ n, powerfulQ]; Array[f, 105] (* Robert G. Wilson v, Jul 14 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2010
STATUS
approved