OFFSET
1,8
COMMENTS
a(n) = number of divisors d of n from set A001694(m) - powerful numbers for m >=2.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
D. Suryanarayana and R. Sitaramachandra Rao, The number of square-full divisors of an integer, Proc. Amer. Math. Soc. 34 (1972), 79-80.
FORMULA
a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = k-1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)*zeta(3)/zeta(6) - 1 = A082695 - 1 = 0.9435964368... . - Amiram Eldar, Jul 30 2022
EXAMPLE
For n = 12, set of such divisors is {4}; a(12) = 1.
MAPLE
f:= n -> convert(map(t->t[2], ifactors(n)[2]), `*`) - 1; # Robert Israel, Jul 14 2014
MATHEMATICA
powerfulQ[n_] := Min[ Last@# & /@ FactorInteger[n]] > 1; f[n_] := Length@ Select[ Divisors@ n, powerfulQ]; Array[f, 105] (* Robert G. Wilson v, Jul 14 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2010
STATUS
approved