OFFSET
1,6
COMMENTS
LINKS
FORMULA
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k - 1, a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(2)*zeta(3)/zeta(6) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 30 2025
EXAMPLE
For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 4.
MATHEMATICA
nonpowQ[n_] := Min[FactorInteger[n][[;; , 2]]] == 1; a[n_] := DivisorSum[n, 1 &, # > 1 && nonpowQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
PROG
(PARI) a(n) = sumdiv(n, d, d > 1 && vecmin(factor(d)[, 2]) == 1); \\ Amiram Eldar, Jan 30 2025
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Jaroslav Krizek, Dec 25 2010
EXTENSIONS
Name corrected by Amiram Eldar, Jan 30 2025
STATUS
approved