login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186950
a(n) = n^2 - 47*n + 479.
2
479, 433, 389, 347, 307, 269, 233, 199, 167, 137, 109, 83, 59, 37, 17, -1, -17, -31, -43, -53, -61, -67, -71, -73, -73, -71, -67, -61, -53, -43, -31, -17, -1, 17, 37, 59, 83, 109, 137, 167, 199, 233, 269, 307, 347, 389, 433, 479, 527, 577, 629, 683, 739, 797, 857
OFFSET
0,1
COMMENTS
a(n) are distinct primes for 0 <= n <= 14. There are 22 distinct (positive and negative) values of primes between a(0) = 479 and a(48) = 527.
For n < 15 and n > 32, the prime numbers of this sequence are in A059425. - Bruno Berselli, Mar 04 2011
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 0..1000
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 479.
FORMULA
G.f.: (479 - 1004*x + 527*x^2)/(1-x)^3. - Bruno Berselli, Mar 05 2011
a(n+19) = -A126665(n). - Arkadiusz Wesolowski, Oct 24 2013
From Elmo R. Oliveira, Nov 02 2024: (Start)
E.g.f.: (479 - 46*x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MAPLE
seq(n^2-47*n+479, n=0..53); # Arkadiusz Wesolowski, Mar 08 2011
MATHEMATICA
Table[n^2 - 47*n + 479, {n, 0, 53}] (* Arkadiusz Wesolowski, Mar 05 2011 *)
LinearRecurrence[{3, -3, 1}, {479, 433, 389}, 60] (* Harvey P. Dale, Nov 28 2018 *)
PROG
(Magma) [n^2-47*n+479 : n in [0..53]]; // Arkadiusz Wesolowski, Mar 05 2011
(PARI) for(n=0, 53, print1(n^2-47*n+479, ", ")); \\ Arkadiusz Wesolowski, Mar 02 2011
CROSSREFS
Sequence in context: A119129 A252542 A122268 * A056987 A323051 A025025
KEYWORD
easy,sign
AUTHOR
STATUS
approved