%I #79 Nov 02 2024 17:59:48
%S 479,433,389,347,307,269,233,199,167,137,109,83,59,37,17,-1,-17,-31,
%T -43,-53,-61,-67,-71,-73,-73,-71,-67,-61,-53,-43,-31,-17,-1,17,37,59,
%U 83,109,137,167,199,233,269,307,347,389,433,479,527,577,629,683,739,797,857
%N a(n) = n^2 - 47*n + 479.
%C a(n) are distinct primes for 0 <= n <= 14. There are 22 distinct (positive and negative) values of primes between a(0) = 479 and a(48) = 527.
%C For n < 15 and n > 32, the prime numbers of this sequence are in A059425. - _Bruno Berselli_, Mar 04 2011
%H Arkadiusz Wesolowski, <a href="/A186950/b186950.txt">Table of n, a(n) for n = 0..1000</a>
%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/21697.html">Prime Curios! 479</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (479 - 1004*x + 527*x^2)/(1-x)^3. - _Bruno Berselli_, Mar 05 2011
%F a(n+19) = -A126665(n). - _Arkadiusz Wesolowski_, Oct 24 2013
%F From _Elmo R. Oliveira_, Nov 02 2024: (Start)
%F E.g.f.: (479 - 46*x + x^2)*exp(x).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
%p seq(n^2-47*n+479, n=0..53); # _Arkadiusz Wesolowski_, Mar 08 2011
%t Table[n^2 - 47*n + 479, {n, 0, 53}] (* _Arkadiusz Wesolowski_, Mar 05 2011 *)
%t LinearRecurrence[{3,-3,1},{479,433,389},60] (* _Harvey P. Dale_, Nov 28 2018 *)
%o (Magma) [n^2-47*n+479 : n in [0..53]]; // _Arkadiusz Wesolowski_, Mar 05 2011
%o (PARI) for(n=0, 53, print1(n^2-47*n+479, ", ")); \\ _Arkadiusz Wesolowski_, Mar 02 2011
%Y Cf. A059425, A126665.
%K easy,sign
%O 0,1
%A _Arkadiusz Wesolowski_, Mar 01 2011