OFFSET
0,1
COMMENTS
Numbers n > 0 such that x^3 + 2*x^2 + n factors over the integers. - James R. Buddenhagen, Apr 19 2005
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Patrick De Geest, Palindromic Quasi_Under_Squares of the form n+(n+1)^2
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (n+1)*(n+3)^2. - Zerinvary Lajos, Sep 24 2006, corrected Dec 21 2010
G.f.: (9 - 4*x + x^2)/(1 - x)^4. - R. J. Mathar, Dec 21 2010
a(n) = coefficient of x^3 in the Maclaurin expansion of -1/((n+3)*x^2 + (n+3)*x + 1). - Francesco Daddi, Aug 04 2011
E.g.f.: (9 + 23*x + 10*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 05 2022
MAPLE
[seq((n+3)^2*(n+1), n=0..40)]; # Zerinvary Lajos, Sep 24 2006
MATHEMATICA
Table[n +(n+1)^2 +(n+2)^3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {9, 32, 75, 144}, 40] (* Harvey P. Dale, Feb 23 2021 *)
PROG
(Sage) [i+(i+1)^2+(i+2)^3 for i in range(0, 38)] # Zerinvary Lajos, Jul 03 2008
(Magma) [n + (n+1)^2 + (n+2)^3: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
(Maxima) A027620(n):=n + (n+1)^2 + (n+2)^3$ makelist(A027620(n), n, 0, 15); /* Martin Ettl, Dec 13 2012 */
(PARI) a(n)=n+(n+1)^2+(n+2)^3 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved