OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Patrick De Geest, Palindromic Quasi_Under_Squares of the form n+(n+1)^2
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: 16/(1-x) + 16/(1-x)^2 + 16/(1-x)^3 + 18/(1-x)^4 + 24/(1-x)^5. - R. J. Mathar, Feb 22 2008
a(n) = (n+3)^2*(n^2 + 7*n + 10). - Bruno Berselli, Aug 05 2011
E.g.f.: (90 + 198*x + 107*x^2 + 19*x^3 + x^4)*exp(x). - G. C. Greubel, Aug 05 2022
MAPLE
seq( (n+3)^2*(n^2 + 7*n + 10), n=0..40); # G. C. Greubel, Aug 05 2022
MATHEMATICA
Table[Total[Table[(n+i)^(i+1), {i, 0, 3}]], {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {90, 288, 700, 1440, 2646}, 40] (* Harvey P. Dale, Jun 08 2017 *)
PROG
(Sage) [i+(i+1)^2+(i+2)^3+(i+3)^4 for i in range(0, 40)] # Zerinvary Lajos, Jul 03 2008
(Magma) [n + (n+1)^2 + (n+2)^3 + (n+3)^4: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved