OFFSET
0,2
COMMENTS
Binomial transform of [1, 8, 15, 8, 0, 0, 0, ...]. - Gary W. Adamson, Nov 23 2007
Principal diagonal of the convolution array A213751. - Clark Kimberling, Jun 20 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Josh Deprez, Fair amenability for semigroups, arXiv preprint arXiv:1310.5589 [math.GR], 2013-2015.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (n+1)*(8*n^2 + 13*n + 6)/6.
a(0)=1, a(1)=9, a(2)=32, a(3)=78, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 23 2011
G.f.: (1+5*x+2*x^2)/(x-1)^4. - Harvey P. Dale, Jun 23 2011
MAPLE
a:=n->sum(k^2, k=1..n):seq(a(n)+sum(n^2, k=2..n), n=1...40); # Zerinvary Lajos, Jun 11 2008
MATHEMATICA
Table[(n+1)^3+Sum[i^2, {i, n}], {n, 0, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {1, 9, 32, 78}, 40] (* Harvey P. Dale, Jun 23 2011 *)
PROG
(PARI) a(n)=((8*n+21)*n+19)*n/6+1 \\ Charles R Greathouse IV, Jun 23 2011
(Maxima) A051662(n):=((8*n+21)*n+19)*n/6+1$ makelist(A051662(n), n, 0, 15); /* Martin Ettl, Dec 13 2012 */
(Haskell) - following Gary W. Adamson's comment.
a051662 = sum . zipWith (*) [1, 8, 15, 8] . a007318_row
-- Reinhard Zumkeller, Feb 19 2015
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
EXTENSIONS
Corrected by T. D. Noe, Nov 01 2006 and Nov 08 2006
STATUS
approved