|
|
A051663
|
|
Primes p such that there is no Carmichael number pqr, p<q<r q, r primes.
|
|
5
|
|
|
2, 11, 197, 1223, 1487, 4007, 4547, 7823, 9833, 9839, 10259, 11483, 11807, 11909, 13259, 13967, 14207, 15629, 15803, 16139, 16889, 18287, 19583, 22367, 23039, 23879, 24359, 25349, 29339, 30707, 32027, 33343, 34883, 36929, 38747
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Gilberto Garcia-Pulgarin, Numeros de Carmichael producto de tes primos, preprint, 1999.
|
|
LINKS
|
|
|
EXAMPLE
|
2 is in the sequence since is no Carmichael number of the form 2rq.
|
|
PROG
|
(PARI) is(p) = {
for( A=1, p-1,
my(B=ceil((p^2+1)/A), q, r);
while(1,
r=(B*(p+A-1)-p)/(A*B-p*p);
q=(A*r-A+1)/p;
if(p>=q, break);
if(denominator(q)==1 && denominator(r)==1 && r>q && (q*r)%(p-1)==1 && isprime(q) && isprime(r), return(0));
B++
)
);
1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Edited by Jack Brennen, Jul 01 2008
|
|
STATUS
|
approved
|
|
|
|