login
A051660
Experimental values for number of circles in packing equal circles into a square for which there is a loose circle.
1
7, 11, 13, 14, 17, 19, 21, 22, 26, 28, 29, 31, 32, 33, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100
OFFSET
0,1
REFERENCES
H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved problems in geometry, Springer, New York, 1991.
LINKS
L. G. Casado, I. García, P. G. Szabó, and T. Csendes, Packing Equal Circles in a Square II. - New Results for up to 100 Circles Using the TAMSASS-PECS Algorithm, Optimization Theory: Recent Developments from Mátraháza, Kluwer Academic Publishers, Dordrecht, 2001, pp. 207-224.
C. D. Maranas, C. A. Floudas and P. M. Pardalos, New results in the packing of equal circles in a square, Discrete Mathematics 142 (1995), p. 287-293.
K. J. Nurmela and Patric R. J. Östergård, Packing up to 50 equal circles in a square, Discrete Comput. Geom. 18 (1997) 1, p. 111-120.
P. G. Szabó, T. Csendes, L. G. Casado, and I. García, Packing Equal Circles in a Square I. - Problem Setting and Bounds for Optimal Solutions, Optimization Theory: Recent Developments from Mátraháza, Kluwer Academic Publishers, Dordrecht, 2001, pp. 191-206.
CROSSREFS
Sequence in context: A110547 A279622 A247819 * A364562 A187040 A028784
KEYWORD
nonn
AUTHOR
Eckard Specht (eckard.specht(AT)physik.uni-magdeburg.de)
EXTENSIONS
I do not know how many of these values have been rigorously proved. - N. J. A. Sloane
STATUS
approved