login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279622
Numbers with a prime factor greater than 5.
7
7, 11, 13, 14, 17, 19, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94
OFFSET
1,1
LINKS
FORMULA
a(n) = n + O(log^3 n). - Charles R Greathouse IV, Dec 22 2016
MATHEMATICA
fQ[n_]:=!PowerMod[30, n, n] == 0; Select[Range[100], fQ]
Select[Range[100], Max[FactorInteger[#][[;; , 1]]]>5&] (* Harvey P. Dale, Feb 28 2023 *)
PROG
(PARI) isok(n) = vecmax(factor(n)[, 1]) > 5; \\ Michel Marcus, Dec 21 2016
(PARI) is(n)=if(n<7, return(0)); n>>=valuation(n, 2); n/=3^valuation(n, 2) * 5^valuation(n, 5); n>1 \\ Charles R Greathouse IV, Dec 22 2016
(Magma) [n: n in [1..100] | not PrimeDivisors(n) subset [2, 3, 5]]; // Vincenzo Librandi, Jan 29 2017
(Python)
from sympy import integer_log
def A279622(n):
def f(x):
c = n
for i in range(integer_log(x, 5)[0]+1):
for j in range(integer_log(y:=x//5**i, 3)[0]+1):
c += (y//3**j).bit_length()
return c
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Sep 16 2024
CROSSREFS
Complement of A051037.
Cf. A059485.
Sequence in context: A091901 A072823 A110547 * A247819 A051660 A364562
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 21 2016
STATUS
approved