The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279621 Numbers k such that 1/phi(x) + 1/phi(y) = 1/phi(k), for some x + y = k and phi(k) is the Euler totient function of k. 1
1890, 2100, 2310, 3780, 5250, 7770, 10080, 11310, 11550, 11880, 12180, 13230, 13650, 13860, 14190, 14910, 15750, 17640, 18060, 19950, 20460, 20790, 21630, 22050, 22110, 23100, 24090, 24180, 24570, 25410, 25620, 25830, 26070, 27090, 27510, 27720, 28980, 29040, 29400 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
All terms appear to be multiples of 30.
Terms that are not divisible by 30: 70224, 72072, 96558, 114114, 122892, 156156, 166782, 184338, 191268, ... - Amiram Eldar, Jul 22 2019
LINKS
EXAMPLE
1890 = 817 + 1073 and 1/phi(817) + 1/phi(1073) = 1/756 + 1/1008 = 1/432 = 1/phi(1890).
The first term with more than one solution is 14190:
14190 = 6319 + 7871 and 1/phi(6319) + 1/phi(7871) = 1/6160 + 1/7392 = 1/3360 = 1/phi(14190).
14190 = 6443 + 7747 and 1/phi(6443) + 1/phi(7747) = 1/6048 + 1/7560 = 1/3360 = 1/phi(14190).
MAPLE
with(numtheory): P:= proc(q) local k, n; for n from 1 to q do
for k from 1 to trunc(n/2) do if 1/phi(k)+1/phi(n-k)=1/phi(n)
then print(n); break; fi; od; od; end: P(10^6);
MATHEMATICA
aQ[n_] := Module[{k = 1, r = 1/EulerPhi[n]}, While[2*k <= n && 1/EulerPhi[k] + 1/EulerPhi[n - k] != r, k++]; 2*k <= n]; (* Amiram Eldar, Jul 22 2019 *)
CROSSREFS
Cf. A000010.
Sequence in context: A106764 A157486 A086476 * A168226 A151721 A187743
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Dec 19 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 00:13 EDT 2024. Contains 373491 sequences. (Running on oeis4.)