The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226052 Denominators of signed Egyptian fractions with sums converging to sqrt(2). 4
 2, 11, 195, 180120, 120479425978, 27716921130006533867139, 1040296455490146050257045342043017466273633682 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Using the algorithm defined at A226049 with r = sqrt(2) and f(n) = 1/n gives r = 1 + 1/2 - 1/11 + 1/195 - 1/180120 + ..., of which the 13th partial sum differs from the r by less than 10^(-2900). For a guide to related sequences, see A226049. LINKS Clark Kimberling, Table of n, a(n) for n = 1..12 EXAMPLE Let r = sqrt(2). Then 1 < r < 1 + 1/2, so a(1) = 2. 1 + 1/2 -1/11 < r, so a(2) = 11. 1 + 1/2 - 1/11 + 1/195 > r, so a(3) = 195. MATHEMATICA \$MaxExtraPrecision = Infinity; nn = 12; f[n_] := 1/n; r = Pi; s = 0; b[1] = NestWhile[# + 1 &, 1, ! (s += f[#]) > r &]; u[1] = Sum[f[n], {n, 1, b[1]}]; c[1] = Floor[1/(u[1] - r)]; v[1] = u[1] - 1/c[1]; n = 1; While[n < nn/2, n++; b[n] = Floor[1/(r - v[n - 1])]; u[n] = v[n - 1] + 1/b[n]; c[n] = Floor[1/(u[n] - r)]; v[n] = u[n] - 1/c[n]]; a = Riffle[Table[b[i], {i, 1, nn/2}], Table[c[i], {i, 1, nn/2}]] CROSSREFS Cf. A226049. Sequence in context: A007984 A132871 A140314 * A271429 A051663 A348859 Adjacent sequences: A226049 A226050 A226051 * A226053 A226054 A226055 KEYWORD nonn AUTHOR Clark Kimberling, May 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 21:40 EDT 2023. Contains 361673 sequences. (Running on oeis4.)