OFFSET
0,2
COMMENTS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 206*x^3 + 17586*x^4 + 6878604*x^5 +...
The l.g.f. of A188202 begins:
log(A(x)) = 2*x + 18*x^2/2 + 560*x^3/3 + 68614*x^4/4 + 34210752*x^5/5 +...
The coefficients of x^n in (1 + 2^n*x + x^2)^n begin:
n=1: [1, (2), 1];
n=2: [1, 8, (18), 8, 1];
n=3: [1, 24, 195, (560), 195, 24, 1];
n=4: [1, 64, 1540, 16576, (68614), 16576, 1540, 64, 1];
n=5: [1, 160, 10245, 328320, 5273610, (34210752), 5273610, ...]; ...
where the central coefficients form the logarithmic derivative, A188202.
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, polcoeff((1+2^k*x+x^2+x*O(x^k))^k, k)*x^k/k)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 24 2011
STATUS
approved