login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188203
G.f.: exp( Sum_{n>=1} A188202(n)*x^n/n ) where A188202(n) = [x^n] (1 + 2^n*x + x^2)^n.
1
1, 2, 11, 206, 17586, 6878604, 11551087875, 80650796495414, 2307974943300931286, 268728588584911887188180, 126776477973814964972206209838, 241684409250478693507166916367088620
OFFSET
0,2
COMMENTS
Compare to the g.f. M(x) of the Motzkin numbers (A001006):
M(x) = exp( Sum_{n>=1} A002426(n)*x^n/n) where A002426(n) = [x^n] (1+x+x^2)^n.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 206*x^3 + 17586*x^4 + 6878604*x^5 +...
The l.g.f. of A188202 begins:
log(A(x)) = 2*x + 18*x^2/2 + 560*x^3/3 + 68614*x^4/4 + 34210752*x^5/5 +...
The coefficients of x^n in (1 + 2^n*x + x^2)^n begin:
n=1: [1, (2), 1];
n=2: [1, 8, (18), 8, 1];
n=3: [1, 24, 195, (560), 195, 24, 1];
n=4: [1, 64, 1540, 16576, (68614), 16576, 1540, 64, 1];
n=5: [1, 160, 10245, 328320, 5273610, (34210752), 5273610, ...]; ...
where the central coefficients form the logarithmic derivative, A188202.
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, polcoeff((1+2^k*x+x^2+x*O(x^k))^k, k)*x^k/k)+x*O(x^n)), n)}
CROSSREFS
Cf. A188202 (log); variant: A001006.
Sequence in context: A051663 A348859 A358649 * A070256 A356523 A020450
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 24 2011
STATUS
approved