login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070256 Define P(n,X) by the recursion P(1,X)=1, P(n+1,X)=(P(n,X)+X)^2; then a(1)=0 and for n>1 a(n) is the coefficient of X^(2^(n-2)) in P(n,X) of degree 2^(n-1). 0
0, 2, 11, 207, 99919, 32416037103, 4788545326929179011183, 147201835861247697127798679336116306013028335, 196331785117316517420778884783875086749917195699904294273499082962835791812062775501401839 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the greatest coefficient in P(n,X). Next term is too large to include.

LINKS

Table of n, a(n) for n=1..9.

FORMULA

for n>4 2^(2^n)<a(n)<(5/2)^(2^n)

EXAMPLE

P(1,X)=1 then P(2,X)=(1+X)^2=X^2+2X+1, the coefficient of X^(2^(2-2))=X is 2=a(2). P(4,X)=x^8+12*x^7+58*x^6+146*x^5+207*x^4+166*x^3+71*x^2+14*x+1 and the coefficient of X^(2^(4-2))=X^4 is 207=a(4).

PROG

(PARI) u=1; for(n=2, 6, a=(u+x)^2; u=a; print1(polcoeff(u, 2^(n-2), x), ", "))

CROSSREFS

Sequence in context: A271429 A051663 A188203 * A020450 A036229 A104337

Adjacent sequences:  A070253 A070254 A070255 * A070257 A070258 A070259

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, May 09 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 23:28 EDT 2020. Contains 334607 sequences. (Running on oeis4.)