OFFSET
1,2
COMMENTS
Every palindrome of the form h^2-1 is of the form m*(m+2) (easy to prove by replacing h by m+1). In fact this is equal to A028503 + 1. - Patrick De Geest, May 09 2002
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..53
P. De Geest, Palindromic quasipronic numbers of the form n(n+2)
FORMULA
a(n) = A028503(n) + 1. - Giovanni Resta, Aug 29 2018
MATHEMATICA
Do[ If[ a = IntegerDigits[n^2 - 1]; a == Reverse[a], Print[n]], {n, 1, 10^8/4}]
Select[Range[10^8], PalindromeQ[#^2-1]&] (* Harvey P. Dale, Oct 13 2024 *)
PROG
(PARI) intreverse(n)=local(d, rev); rev=0; while(n>0, d=divrem(n, 10); n=d[1]; rev=10*rev+d[2]); rev
for(n=1, 100000000, q=n*n-1; if(q==intreverse(q), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, May 06 2002
EXTENSIONS
STATUS
approved