OFFSET
0,2
COMMENTS
A matrix A over a finite field is convergent if A^j=A^(j+1) for some j>=1. Every convergent matrix converges to an idempotent matrix. Every idempotent matrix is convergent to itself. Every nilpotent matrix is convergent to the zero matrix.
FORMULA
Sum_{n>=0} a(n)*x^n/B(n) = f(x)*e(x) where f(x)=Sum_{n>=0} q^(n^2-n)*x^n/B(n), e(x)=Sum_{n>=0} x^n/B(n), B(n)=Product_{i=0..n-1} (q^n-q^i)/(q-1)^n, and q=2. - Geoffrey Critzer, Jan 02 2025
MATHEMATICA
nn = 12; q = 2; g[n_] := Product[q^n - q^i, {i, 0, n - 1}]; Table[Sum[g[n]/(g[k] g[n - k]) q^((n - k) (n - k - 1)), {k, 0, n}], {n, 0, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Nov 26 2022
STATUS
approved