login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220084
a(n) = (n + 1)*(20*n^2 + 19*n + 6)/6.
7
1, 15, 62, 162, 335, 601, 980, 1492, 2157, 2995, 4026, 5270, 6747, 8477, 10480, 12776, 15385, 18327, 21622, 25290, 29351, 33825, 38732, 44092, 49925, 56251, 63090, 70462, 78387, 86885, 95976, 105680, 116017, 127007, 138670, 151026, 164095, 177897, 192452
OFFSET
0,2
COMMENTS
Sequence related to heptagonal pyramidal numbers (A002413) by a(n) = n*A002413(n) - (n-1)*A002413(n-1).
Other sequences of numbers of the form m*P(k,m)-(m-1)*P(k,m-1), where P(k,m) is the m-th k-gonal pyramidal number:
k=3, A002412(m) = m*A000292(m)-(m-1)*A000292(m-1);
k=4, A051662(m) = (m+1)*A000330(m+1)-m*A000330(m);
k=5, A213772(m) = m*A002411(m)-(m-1)*A002411(m-1);
k=6, A213837(m) = m*A002412(m)-(m-1)*A002412(m-1);
k=7, this sequence;
k=8, A130748(m) = m*A002414(m)-(m-1)*A002414(m-1).
Also, first bisection of A212983.
Binomial transform of (1, 14, 33, 20, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015
FORMULA
G.f.: (1+11*x+8*x^2)/(1-x)^4.
a(0)=1, a(1)=15, a(2)=62, a(3)=162; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 23 2012
a(n) = (n+1)*A000566(n+1) + Sum_{i=0..n} A000566(i). - Bruno Berselli, Dec 18 2013
MATHEMATICA
Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {1, 15, 62, 162}, 40] (* Harvey P. Dale, Dec 23 2012 *)
CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
PROG
(Magma) [(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
(Magma) /* By first comment: */ A002413:=func<n | n*(n+1)*(5*n-2)/6>; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]];
(Magma) I:=[1, 15, 62, 162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
(Maxima) makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
(PARI) a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 11 2012
STATUS
approved