OFFSET
0,2
COMMENTS
Sequence related to heptagonal pyramidal numbers (A002413) by a(n) = n*A002413(n) - (n-1)*A002413(n-1).
Other sequences of numbers of the form m*P(k,m)-(m-1)*P(k,m-1), where P(k,m) is the m-th k-gonal pyramidal number:
k=7, this sequence;
Also, first bisection of A212983.
Binomial transform of (1, 14, 33, 20, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: (1+11*x+8*x^2)/(1-x)^4.
a(0)=1, a(1)=15, a(2)=62, a(3)=162; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 23 2012
MATHEMATICA
Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {1, 15, 62, 162}, 40] (* Harvey P. Dale, Dec 23 2012 *)
CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
PROG
(Magma) [(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
(Magma) /* By first comment: */ A002413:=func<n | n*(n+1)*(5*n-2)/6>; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]];
(Magma) I:=[1, 15, 62, 162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
(Maxima) makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
(PARI) a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 11 2012
STATUS
approved