OFFSET
1,1
COMMENTS
The identity (2048*n^2 - 128*n + 1)^2 - (16*n^2 - n)*(512*n - 16)^2 = 1 can be written as A157448(n)^2 - a(n)*A157447(n)^2 = 1. - Vincenzo Librandi, Jan 26 2012
This is the case s=4 of the identity (8*n^2*s^4 - 8*n*s^2 + 1)^2 - (n^2*s^2 - n)*(8*n*s^3 - 4*s)^2 = 1. - Bruno Berselli, Jan 26 2012
Sequence found by reading the line from 15, in the direction 15, 62, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
The continued fraction expansion of sqrt(a(n)) is [4n-1; {1, 6, 1, 8n-2}]. For n=1, this collapses to [3; {1, 6}]. - Magus K. Chu, Sep 22 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(15 + 17*x)/(1-x)^3. - Vincenzo Librandi, Jan 26 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {15, 62, 141}, 40] (* Vincenzo Librandi, Jan 26 2012 *)
PROG
(Magma) I:=[15, 62, 141]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(16*n^2 - n", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved