|
|
A157447
|
|
a(n) = 512*n - 16.
|
|
3
|
|
|
496, 1008, 1520, 2032, 2544, 3056, 3568, 4080, 4592, 5104, 5616, 6128, 6640, 7152, 7664, 8176, 8688, 9200, 9712, 10224, 10736, 11248, 11760, 12272, 12784, 13296, 13808, 14320, 14832, 15344, 15856, 16368, 16880, 17392, 17904, 18416, 18928
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The identity (2048*n^2 - 128*n + 1)^2 - (16*n^2 - n)*(512*n - 16)^2 = 1 can be written as A157448(n)^2 - A157446(n)*a(n)^2 = 1 (see also second comment at A157446). - Vincenzo Librandi, Jan 26 2012
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) I:=[496, 1008]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|