This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023855 a(n) = 1*(n) + 2*(n-1) + 3*(n-2) + ... + (n+1-k)*k, where k = floor((n+1)/2). 15
 1, 2, 7, 10, 22, 28, 50, 60, 95, 110, 161, 182, 252, 280, 372, 408, 525, 570, 715, 770, 946, 1012, 1222, 1300, 1547, 1638, 1925, 2030, 2360, 2480, 2856, 2992, 3417, 3570, 4047, 4218, 4750, 4940, 5530, 5740, 6391, 6622, 7337, 7590, 8372, 8648, 9500, 9800, 10725, 11050 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Given a rectangle of perimeter 2*n one can form rectangles having this perimeter for a number of different rectangles or squares depending on how large 2*n is.  The sequence lists the total areas of all such rectangles for each 2*n. - J. M. Bergot, Sep 14 2011 Conjecture: Antidiagonal sums of triangle A075462. - L. Edson Jeffery, Jan 20 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1) FORMULA a(n) = (n+1)*(n+3)*(2*n+1)/24 if n is odd, or n*(n+1)*(n+2)/12 if n is even. G.f.: x*(1+x+2*x^2)/((1-x)^4*(1+x)^3). - Ralf Stephan, Apr 28 2004 a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+1) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2)-3n-2)/6. - Wesley Ivan Hurt, Sep 19 2013 a(n) = (4*n^3 + 15*n^2 + 14*n + 3 - 3*(n+1)^2*(-1)^n)/48. - Luce ETIENNE, Oct 22 2014 a(n) = (A000292(n) + (n mod 2)*(ceiling(n/2))^2)/2. - Luc Rousseau, Feb 25 2018 MAPLE seq(-(1/3)*floor((k+1)/2)^3 + (k/2)*floor((k+1)/2)^2 + ((3*k+2)/6)*floor((k+1)/2), k=1..100); # Wesley Ivan Hurt, Sep 18 2013 MATHEMATICA LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 2, 7, 10, 22, 28, 50}, 50] (* Vincenzo Librandi, Jan 23 2012 *) Table[-Ceiling[n/2] (Ceiling[n/2] + 1) (2 Ceiling[n/2] - 3 n - 2)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *) PROG (PARI) a(n)=if(n%2, (n+1)*(n+3)*(2*n+1)/24, n*(n+1)*(n+2)/12) (PARI) x='x+O('x^99); Vec(x*(1+x+2*x^2)/((1-x)^4*(1+x)^3)) \\ Altug Alkan, Mar 03 2018 (Haskell) a023855 n = sum \$ zipWith (*) [1 .. div (n+1) 2] [n, n-1 ..] -- Reinhard Zumkeller, Jan 23 2012 CROSSREFS Cf. A023856, A023857, A024305, A024854. Sequence in context: A049830 A270879 A022302 * A191832 A066964 A066967 Adjacent sequences:  A023852 A023853 A023854 * A023856 A023857 A023858 KEYWORD nonn,easy AUTHOR EXTENSIONS Formula, program, and slight revision by Charles R Greathouse IV, Feb 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 20:29 EDT 2018. Contains 313840 sequences. (Running on oeis4.)