login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270879
Expansion of (x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8).
0
0, 1, 1, 2, 7, 10, 20, 34, 65, 124, 230, 430, 800, 1494, 2792, 5210, 9727, 18155, 33892, 63271, 118110, 220484, 411588, 768337, 1434304, 2677500, 4998252, 9330536, 17417876, 32515004, 60697720, 113308101, 211519073, 394855430, 737100483, 1375989990
OFFSET
0,4
FORMULA
a(n) = n*Sum_{j=0..(n-1)/3} binomial(n-3*j,n-4*j)*F(n-3*j)/(n-3*j), where F(n) = A000045(n).
MATHEMATICA
CoefficientList[Series[(x + 4 x^4)/(1 - x - x^2 - x^4 - 2 x^5 - x^8), {x, 0, 35}], x] (* Michael De Vlieger, Mar 28 2016 *)
LinearRecurrence[{1, 1, 0, 1, 2, 0, 0, 1}, {0, 1, 1, 2, 7, 10, 20, 34}, 40] (* Harvey P. Dale, Jul 03 2017 *)
PROG
(Maxima) a(n):=n*sum(binomial(n-3*j, n-4*j)/(n-3*j)*fib(n-3*j), j, 0, (n-1)/3); /* or */ taylor((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8), x, 0, 10);
(PARI) a(n) = n*sum(k=0, (n-1)/3, binomial(n-3*k, n-4*k)/(n-3*k)*fibonacci(n-3*k)); \\ Altug Alkan, Mar 25 2016
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8)));
CROSSREFS
Cf. A000045.
Sequence in context: A336903 A155171 A049830 * A022302 A345026 A023855
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Mar 25 2016
STATUS
approved