The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270879 Expansion of (x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8). 0
 0, 1, 1, 2, 7, 10, 20, 34, 65, 124, 230, 430, 800, 1494, 2792, 5210, 9727, 18155, 33892, 63271, 118110, 220484, 411588, 768337, 1434304, 2677500, 4998252, 9330536, 17417876, 32515004, 60697720, 113308101, 211519073, 394855430, 737100483, 1375989990 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,2,0,0,1). FORMULA a(n) = n*Sum_{j=0..(n-1)/3} binomial(n-3*j,n-4*j)*F(n-3*j)/(n-3*j), where F(n) = A000045(n). MATHEMATICA CoefficientList[Series[(x + 4 x^4)/(1 - x - x^2 - x^4 - 2 x^5 - x^8), {x, 0, 35}], x] (* Michael De Vlieger, Mar 28 2016 *) LinearRecurrence[{1, 1, 0, 1, 2, 0, 0, 1}, {0, 1, 1, 2, 7, 10, 20, 34}, 40] (* Harvey P. Dale, Jul 03 2017 *) PROG (Maxima) a(n):=n*sum(binomial(n-3*j, n-4*j)/(n-3*j)*fib(n-3*j), j, 0, (n-1)/3); /* or */ taylor((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8), x, 0, 10); (PARI) a(n) = n*sum(k=0, (n-1)/3, binomial(n-3*k, n-4*k)/(n-3*k)*fibonacci(n-3*k)); \\ Altug Alkan, Mar 25 2016 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8))); CROSSREFS Cf. A000045. Sequence in context: A336903 A155171 A049830 * A022302 A023855 A191832 Adjacent sequences:  A270876 A270877 A270878 * A270880 A270881 A270882 KEYWORD nonn,easy AUTHOR Vladimir Kruchinin, Mar 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 04:01 EDT 2021. Contains 343146 sequences. (Running on oeis4.)