OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,2,0,0,1).
FORMULA
a(n) = n*Sum_{j=0..(n-1)/3} binomial(n-3*j,n-4*j)*F(n-3*j)/(n-3*j), where F(n) = A000045(n).
MATHEMATICA
CoefficientList[Series[(x + 4 x^4)/(1 - x - x^2 - x^4 - 2 x^5 - x^8), {x, 0, 35}], x] (* Michael De Vlieger, Mar 28 2016 *)
LinearRecurrence[{1, 1, 0, 1, 2, 0, 0, 1}, {0, 1, 1, 2, 7, 10, 20, 34}, 40] (* Harvey P. Dale, Jul 03 2017 *)
PROG
(Maxima) a(n):=n*sum(binomial(n-3*j, n-4*j)/(n-3*j)*fib(n-3*j), j, 0, (n-1)/3); /* or */ taylor((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8), x, 0, 10);
(PARI) a(n) = n*sum(k=0, (n-1)/3, binomial(n-3*k, n-4*k)/(n-3*k)*fibonacci(n-3*k)); \\ Altug Alkan, Mar 25 2016
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((x+4*x^4)/(1-x-x^2-x^4-2*x^5-x^8)));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Mar 25 2016
STATUS
approved