login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270881
Row sums of triangle A270880. Number of direct-sum decompositions of a finite vector space of n dimensions over GF(2).
8
1, 1, 4, 57, 2921, 540145, 364558049, 906918346689, 8394259686375297, 291375477821572448001, 38187935488350036891532801, 19005446750755761952317881973761, 36091267618694510017592440805677594625, 262587035725176662374187801686523815760228353, 7345273837043092730077580223639933697831592435638273
OFFSET
0,3
COMMENTS
The generating function for these numbers was first derived in Bender & Goldman. My paper derives the direct formula for the numbers for any finite vector space over GF(q) so that when q = 1, the formula gives the Bell numbers--since a direct-sum decomposition is the vector space version of a set partition. This sequence gives the numbers for q = 2. - David P. Ellerman, Mar 26 2016
LINKS
Edward A. Bender, and Jay R. Goldman, Enumerative Uses of Generating Functions, Indiana University Mathematics Journal 20 (8) (1971) 753-65.
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
MATHEMATICA
g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; Table[Total[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &, IntegerPartitions[n, {m}]]], {m, 1, n}]], {n, 1, 15}] (* Geoffrey Critzer, May 18 2017 *)
CROSSREFS
Cf. A270880.
Sequence in context: A240887 A209316 A221866 * A246618 A103907 A108148
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 25 2016
EXTENSIONS
Name extended by David P. Ellerman, Mar 26 2016
a(8)-a(14) from Geoffrey Critzer, May 18 2017
STATUS
approved