The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209316 E.g.f.: Sum_{n>=0} a(n) * (cos(n^2*x) - sin(n^2*x)) * x^n/n! = 1/(1-x). 2
 1, 1, 4, 57, 2456, 240205, 44616096, 14030856525, 6897867308800, 4999592004999705, 5107861266649227520, 7098997630368216900833, 13040338287878632604362752, 30913685990004537377333201253, 92695803952674372198927320920064, 345599063527286969179932122231749365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = n! + Sum_{k=1..n-1} (-1)^[(n-k-1)/2] * binomial(n,k) * k^(2*n-2*k) * a(k) for n>1 with a(0)=a(1)=1. EXAMPLE By definition, the coefficients a(n) satisfy: 1/(1-x) = 1 + 1*(cos(x)-sin(x))*x + 4*(cos(4*x)-sin(4*x))*x^2/2! + 57*(cos(9*x)-sin(9*x))*x^3/3! + 2456*(cos(16*x)-sin(16*x))*x^4/4! + 240205*(cos(25*x)-sin(25*x))*x^5/5! +...+ a(n)*(cos(n^2*x)-sin(n^2*x))*x^n/n! +... PROG (PARI) a(n)=local(A=[1, 1], N); for(i=1, n, A=concat(A, 0); N=#A; A[N]=(N-1)!*(1-Vec(sum(m=0, N-1, A[m+1]*x^m/m!*(cos(m^2*x+x*O(x^N))-sin(m^2*x+x*O(x^N)))))[N])); A[n+1] for(n=0, 25, print1(a(n), ", ")) (PARI) a(n)=if(n==0 || n==1, 1, n!+sum(k=1, n-1, (-1)^((n-k-1)\2)*a(k)*binomial(n, k)*k^(2*n-2*k))) for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A219504, A221535, A220282, A209317. Sequence in context: A209317 A231491 A240887 * A221866 A270881 A246618 Adjacent sequences: A209313 A209314 A209315 * A209317 A209318 A209319 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 05:12 EST 2022. Contains 358362 sequences. (Running on oeis4.)