login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270877
Numbers surviving a decaying sieve.
6
1, 2, 4, 5, 6, 8, 13, 16, 17, 19, 22, 23, 24, 27, 28, 29, 32, 34, 38, 39, 40, 41, 42, 44, 49, 50, 51, 52, 56, 59, 60, 61, 64, 65, 68, 71, 72, 73, 74, 80, 89, 92, 94, 95, 96, 104, 107, 109, 113, 116, 118, 128, 131, 134, 137, 139, 142, 149, 151, 155
OFFSET
1,2
COMMENTS
In the normal sieve of Eratosthenes, for a given number p, we cross out all multiples of p; that is, p, p + p, p + p + p, .... In this decaying sieve, we cross out p, p + (p-1), p + (p-1) + (p-2), ..., p + (p-1) + (p-2) + ... + 1 (a finite list of p numbers). The sequence gives those values which are not crossed out by a sum initiated by a lesser integer. They are the "primes" of this decaying sieve.
Geometrical interpretation: in the sieve of Eratosthenes, each surviving integer p can be seen as eliminating those numbers that enumerate a rectangular area dot pattern one side of which has length p. In this sieve, each surviving integer k eliminates each number that enumerates a trapezoidal area dot pattern (on a triangular grid) with longest side k, plus the limiting case of the triangular area dot pattern with side k (the k-th triangular number). - Peter Munn, Jan 05 2017
If such a pattern has m dots, the possible lengths (number of dots) for the longest side are the nonzero numbers that occur in row m of A286013 after the number m in column 1. Thus m is in this sequence if and only if none of the other numbers in row m of A286013 are in this sequence. - Peter Munn, Jun 18 2017
FORMULA
Lexicographically earliest sequence of positive integers such that for n >= 1, 1 <= m < n, k >= 1, A286013(a(n),k) <> a(m). - Peter Munn, Jun 19 2017
EXAMPLE
The sieve starts as follows. Initially no numbers are crossed out. Take a(1)=1 and cross it out. The next uncrossed number is 2, so a(2)=2. Now cross out 2 and 2+1. The next uncrossed number is 4, so a(3)=4. Then cross out 4, 4+3, 4+3+2, 4+3+2+1. The next uncrossed number is 5, and so on.
MATHEMATICA
nn = 200; a = Range@ nn; Do[If[Length@a >= n, a = Complement[a, Function[k, Rest@ Map[Total, MapIndexed[Take[k, #] &, Range@ Max@ k]]]@ Reverse@ Range@ a[[n]]]], {n, 2, nn}]; a (* Michael De Vlieger, Mar 25 2016 *)
PROG
(Java)
int limit = 15707; //highest number in the sieve (inclusive)
boolean[] n = new boolean[limit + 1];
int index = 1;
for ( int i = 1; i < n.length; i++ ) {
if ( !n[i] ) {
System.out.println(index++ + " " + i);
int j = i, k = i;
while ( k + j - 1 < n.length && j > 0 ) {
k += --j;
n[k] = true;
}
}
}
// Griffin N. Macris, Mar 24 2016
CROSSREFS
Cf. A281256 for tabulation of its runs of consecutive integers.
Sequence in context: A255577 A245319 A037081 * A303909 A110277 A325680
KEYWORD
nonn,nice
AUTHOR
Sean A. Irvine, Mar 24 2016
EXTENSIONS
Essential qualification added to definition by Peter Munn, Jan 19 2017
STATUS
approved