login
A303909
Expansion of 2*(1 - x)/(3 - theta_3(x)), where theta_3() is the Jacobi theta function.
0
1, 0, 0, 0, 1, 1, 1, 1, 2, 4, 5, 6, 8, 13, 19, 26, 36, 51, 74, 105, 148, 208, 296, 421, 597, 846, 1198, 1699, 2409, 3417, 4843, 6865, 9732, 13799, 19566, 27739, 39325, 55749, 79041, 112063, 158877, 225241, 319331, 452734, 641866, 910001, 1290137, 1829079, 2593169, 3676457, 5212266
OFFSET
0,9
COMMENTS
First differences of A006456.
FORMULA
G.f.: (1 - x)/(1 - Sum_{k>=1} x^(k^2)).
MAPLE
b:= proc(n) option remember; `if`(n<0, 0,
`if`(n=0, 1, add(b(n-j^2), j=1..isqrt(n))))
end:
a:= n-> b(n)-`if`(n=0, 0, b(n-1)):
seq(a(n), n=0..60); # Alois P. Heinz, May 02 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[2 (1 - x)/(3 - EllipticTheta[3, 0, x]), {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[(1 - x)/(1 - Sum[x^k^2, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Differences[Table[a[n], {n, -1, 50}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 02 2018
STATUS
approved