login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303667
Expansion of 2/((1 - x)*(3 - theta_3(x))), where theta_3() is the Jacobi theta function.
4
1, 2, 3, 4, 6, 9, 13, 18, 25, 36, 52, 74, 104, 147, 209, 297, 421, 596, 845, 1199, 1701, 2411, 3417, 4844, 6868, 9738, 13806, 19573, 27749, 39342, 55778, 79079, 112112, 158944, 225342, 319479, 452941, 642152, 910404, 1290719, 1829911, 2594344, 3678108, 5214606, 7392970, 10481335
OFFSET
0,2
COMMENTS
Partial sums of A006456.
FORMULA
G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k^2))).
MAPLE
b:= proc(n) option remember;
`if`(n=0, 1, add(b(n-i^2), i=1..isqrt(n)))
end:
a:= proc(n) option remember;
`if`(n<0, 0, b(n)+a(n-1))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Apr 28 2018
MATHEMATICA
nmax = 45; CoefficientList[Series[2/((1 - x) (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x]
nmax = 45; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 1, nmax}])), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 45}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 28 2018
STATUS
approved